On the Possibility of Habitable Moons in the System of HD 23079: Results from Orbital Stability Studies

نویسندگان

  • M. Cuntz
  • B. Quarles
  • J. Eberle
چکیده

The aim of our study is to investigate the possibility of habitable moons orbiting the giant planet HD 23079b, a Jupitermass planet, which follows a low-eccentricity orbit in the outer region of HD 23079’s habitable zone. We show that HD 23079b is able to host habitable moons in prograde and retrograde orbits, as expected, noting that the outer stability limit for retrograde orbits is increased by nearly 90% compared with that of prograde orbits, a result consistent with previous generalised studies. For the targeted parameter space, it was found that the outer stability limit for habitable moons varies between 0.05236 and 0.06955 AU (prograde orbits) and between 0.1023 and 0.1190 AU (retrograde orbits), depending on the orbital parameters of the Jupiter-type planet if a minimum mass is assumed. These intervals correspond to 0.306 and 0.345 (prograde orbits) and 0.583 and 0.611 (retrograde orbits) of the planet’s Hill radius. Larger stability limits are obtained if an increased value for the planetary mass mp is considered; they are consistent with the theoretically deduced relationship of m1/3 p . Finally, we compare our results with the statistical formulae of Domingos, Winter, & Yokoyama, indicating both concurrence and limitations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultraviolet Radiation Constraints around the Circumstellar Habitable Zones

Ultraviolet radiation is known to inhibit photosynthesis, induce DNA destruction and cause damage to a wide variety of proteins and lipids. In particular, UV radiation between 200-300 nm becomes energetically very damaging to most of the terrestrial biological systems. On the other hand, UV radiation is usually considered one of the most important energy source on the primitive Earth for the sy...

متن کامل

Dynamical Stability of Terrestrial and Giant Planets in the HD 155358 Planetary System

The results of a study of the dynamical evolution and the habitability of the planetary system of HD 155358 are presented. This system is unique in that it is one of the two low metallicity stars discovered to host a multiple planet system. HD 155358 is host to two Jupiter-sized planets, with minimum masses of 0.86 and 0.50 Jupiter-masses. The orbit of the lower mass planet of this system is lo...

متن کامل

The potential for tidally heated icy and temperate moons around exoplanets

Moons of giant planets may represent an alternative to the classical picture of habitable worlds. They may exist within the circumstellar habitable zone of a parent star, and through tidal energy dissipation they may also offer alternative habitable zones, where stellar insolation plays a secondary, or complementary, role. We investigate the potential extent of stable satellite orbits around a ...

متن کامل

Habitability of Exomoons at the Hill or Tidal Locking Radius

Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. W...

متن کامل

Stability of additional planets in and around the habitable zone of the HD 47186 Planetary System

We study the dynamical stability of an additional, potentially habitable planet in the HD 47186 planetary system. Two planets are currently known in this system: a “hot Neptune” with a period of 4.08 days and a Saturn-mass planet with a period of 3.7 years. Here we consider the possibility that one or more undetected planets exist between the two known planets and possibly within the habitable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013